
© 2012 IBM Corporation

Reusing JITs are from Mars, Dynamic Scripting
Languages are from Venus

Peng Wu, IBM T.J. Watson Research Center

May 9, 2012

© 2012 IBM Corporation2 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Trends in Workloads, Languages, and Architectures

newArchitecture

Ap
pl

ic
at

io
n/

pr
og

ra
m

m
in

g
tra

di
tio

na
l

Accelerators
(GPGPU, FPGA, SIMD)

Dynamic scripting
Languages

(javascript, python, php)

Streaming model
(Hadoop, CUDA,
OpenCL, SPL, …)

multi-core,
general-purpose

C/C++, Fortran,
Java, …

SPEC, HPC,
Database, Webserver

Big data workload
(distributed)

mixed workloads
(data center)

Programming
by examples

traditional

ne
w

System programmers HPC CS programmers Domain experts Non-programmers

Demographic evolution of programmers

© 2012 IBM Corporation3 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Popularity of Dynamic Scripting Languages
Trend in emerging programming paradigms

– Dynamic scripting languages are gaining
popularity and emerging in production deployment

Commercial deployment
- PHP: Facebook, LAMP
- Python: YouTube,

InviteMedia, Google
AppEngine

- Ruby on Rails: Twitter,
ManyEyes

“Python helped us gain a huge lead in features and a
majority of early market share over our competition
using C and Java.”

- Scott Becker
CTO of Invite Media Built on Django, Zenoss, Zope

“Python helped us gain a huge lead in features and a
majority of early market share over our competition
using C and Java.”

- Scott Becker
CTO of Invite Media Built on Django, Zenoss, Zope

2.387%Perl10

2.879%Javascript9

3.665%Python8

4.962%Visual Basic7

5.288%PHP6

7.348%C#5

8.236%Objective-C4

8.896%C++3

17.026%Java2

17.555%C1

ShareNameRank

TIOBE Language Index

Education
- Increasing adoption of

Python as entry-level
programming language

Demographics
- Programming becomes a

everyday skill for many
non-CS majors

1.510%Ruby11

© 2012 IBM Corporation4 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Language Interpreter Comparison (Shootout)

4

Benchmarks: shootout (http://shootout.alioth.debian.org/) measured on Nehalem
Languages: Java (JIT, steady-version); Python, Ruby, Javascript, Lua (Interpreter)
Standard DSL implementation (interpreted) can be 10~100 slower than Java (JIT)

fa
st

er

http://shootout.alioth.debian.org/

© 2012 IBM Corporation5 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus5

Dynamic Scripting Language JIT Landscape

Nitro
CrankShaft

Ion
Monkey

Java
script

Unladen-
swallow

PyPy

Python

Ruby

Rubinius
DaVinci
Machine

Client

PHP

Server

Client/Server

Client/Server

Chakra
DaVinci
Machine

JVM based
– Jython
– JRuby
– Rhino

CLR based
– IronPython
– IronRuby
– IronJscript
– SPUR

Add-on JIT
– Unladen-

swallow
– Fiorano
– Rubinius

Add-on trace JIT
– PyPy
– LuaJIT
– TraceMonkey
– SPUR

Significant difference in JIT effectiveness across languages
– Javascript has the most effective JITs
– Ruby JITs are similar to Python’s

Fiorano

HipHopP9

© 2012 IBM Corporation6 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Scripting Languages Compilers: A Tale of Two Worlds

Customary VM and JIT design targeting
one scripting language

– in-house VM developed from scratch
and designed to facilitate the JIT

– in-house JIT that understands target
language semantics

Heavy development investment, most
noticeably in Javascript

– where performance transfers to
competitiveness

Such VM+JIT bundle significantly reduces
the performance gap between scripting
languages and statically typed ones

– Sometimes more than 10x speedups
over interpreters

The reusing JIT phenomenon
– reuse the prevalent interpreter

implementation of a scripting language
– attach an existing mature JIT
– (optionally) extend the “reusing” JIT to

optimize target scripting languages

Considerations for reusing JITs
– Reuse common services from mature

JIT infrastructure
– Harvest the benefits of mature

optimizations
– Compatibility with standard

implementation by reusing VM

Willing to sacrifice some performance, but
still expect substantial speedups from
compilation

© 2012 IBM Corporation7 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Scripting Languages Compilers: A Tale of Two Worlds

Customary VM and JIT design targeting
one scripting language

– in-house VM developed from scratch
and designed to facilitate the JIT

– in-house JIT that understands target
language semantics

Heavy development investment, most
noticeably in Javascript

– where performance transfers to
competitiveness

Such VM+JIT bundle significantly reduces
the performance gap between scripting
languages and statically typed ones

– Sometimes more than 10x speedups
over interpreters

The reusing JIT phenomenon
– reuse the prevalent interpreter

implementation of a scripting language
– attach an existing mature JIT
– (optionally) extend the “reusing” JIT to

optimize target scripting languages

Considerations for reusing JITs
– Reuse common services from mature

JIT infrastructure
– Harvest the benefits of mature

optimizations
– Compatibility with standard

implementation by reusing VM

Willing to sacrifice some performance, but
still expect substantial speedups from
compilation

© 2012 IBM Corporation8 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Outline

Let’s take an in-depth look at the reusing JIT phenomenon

We focus on the world of Python JIT
1. PyPy: customary VM + trace JIT based on RPython
2. Fiorano JIT: based on Testarossa JIT from IBM J9 VM (our own)
3. Jython: translating Python codes into Java codes
4. Unladen-swallow JIT: based on LLVM JIT (google)
5. IronPython: translating Python codes into CLR (Microsoft)

The rest of the talk
– The state-of-the-art of reusing JIT approach
– Understanding Jython, Fiorano JIT, and PyPy
– Recommendation of Reusing JIT designers
– Conclusions

© 2012 IBM Corporation9 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus9

Python Language and Implementation

Python is an object-oriented, dynamically typed language
– Monolithic object model (every data is an object, including integer or method frame)
– support exception, garbage collection, function continuation
– CPython is Python interpreter in C (de factor standard implementation of Python)

LOAD_GLOBAL (name resolution)
– dictionary lookup

CALL_FUNCTION (method invocation)
– frame object, argument list processing,

dispatch according to types of calls

BINARY_ADD (type generic operation)
– dispatch according to types, object creation

def foo(list):
return len(list)+1

0 LOAD_GLOBAL 0 (len)
3 LOAD_FAST 0 (list)
6 CALL_FUNCTION 1
9 LOAD_CONST 1 (1)
12 BINARY_ADD
13 RETURN_VALUE

foo.py

python bytecode

© 2012 IBM Corporation10 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Overview on Jython

A clean implementation of Python on top of JVM

Generate JVM bytecodes from Python 2.5 codes
– interface with Java programs
– true concurrence (i.e., no global interpreter lock)
– but cannot easily support standard C modules

Runtime rewritten in Java, JIT optimizes user programs and runtime
– Python built-in objects are mapped to Java class hierarchy
– Jython 2.5.x does not use InvokeDynamic in Java7 specification

Jython is an example of JVM languages that share similar characteristics
– e.g., JRuby, Clojure, Scala, Rhino, Groovy, etc
– similar to CLR/.NET based language such as IronPython, IronRuby

© 2012 IBM Corporation11 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

0

0.5

1

1.5

2

2.5

3

django

flo
at

nbody
nqueens
pys

to
ne

ric
hard

s
rie

tve
ld

slo
wpick

le
slo

wsp
itf

ire
slo

wunpick
le

sp
ambayes
geomean

Ex
ec

ut
io

n
Ti

m
e

N
or

m
al

iz
ed

 to
 C

py
th

on

Execution Time of Jython 2.5.2 Normalized over CPython
speedup

© 2012 IBM Corporation12 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Jython: An Extreme case of Reusing JITs

Jython has minimal customization for the target
language Python
– It does a “vanilla” translation of a Python

program to a Java program
– The (Java) JIT has no knowledge of Python

language nor its runtime

private static PyObject calc$1(PyFrame frame)
{
frame.setlocal(3, i$0);
frame.setlocal(2, i$0);
while(frame.getlocal(3)._lt(frame.getlocal(0)).__nonzero__())
{

frame.setlocal(2, frame.getlocal(2)._add(frame.getlocal(1)));
frame.setlocal(3, frame.getlocal(3)._add(i$1));

}
return frame.getlocal(2);

}

def calc1(self,res,size):
x = 0
while x < size:

res += 1
x += 1

return res

© 2012 IBM Corporation13 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Jython Runtime Profile

Java
bytecode

path length per Python loop iteration
(a) localvar-

loop
(b) getattr-

loop
(c) call-loop

heap-read 47 80 131

heap-write 11 11 31

heap-alloc 2 2 5

branch 46 70 101

invoke (JNI) 70(2) 92(2) 115(4)
return 70 92 115

arithmetic 18 56 67

local/const 268 427 583

Total 534 832 1152

def calc2(self,res,size):
x = 0
while x < size:

res += self.a
x += 1

return res

(b) getattr-loop

def foo(self):
return 1

def calc3(self,res,size):
x = 0
while x < size:

res += self.foo()
x += 1

return res

(c) call-loop

In an ideal code generation

Critical path of 1 iteration include:

• 2 integer add
• 1 integer compare
• 1 conditional branch

On the loop exit
• box the accumulated value into
PyInteger
• store boxed value to res

def calc1(self,res,size):
x = 0
while x < size:

res += 1
x += 1

return res

(a) localvar-loop

100x path length
explosion

© 2012 IBM Corporation14 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Why is the Java JIT Ineffective?

What does it take to optimize this example effectively?

Massive inlining to expose all computation within the loop to the JIT
– for integer reduction loop, 70 ~ 110 call sites need to be inlined

Precise data-flow information in the face of many data-flow join
– for integer reduction loop, between 40 ~ 100 branches

Ability to remove redundant allocation, heap-read, and heap-write
– require precise alias/points-to information

Let’s assume that the optimizer can handle local accesses effectively

© 2012 IBM Corporation15 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus15

Python bytecode

CPython

The Fiorano JIT

Python bytecode ->
Intermediate representation

VM

JIT

binary

Optimizations and
code generation

profile
information IR

code
cache

New component

IBM production-quality
Just-In-Time (JIT) compiler for
Java as a base

CPython as a language
virtual machine (VM)

– de facto standard of
Python

Same structure as
Unladen Swallow

CPython with LLVM

Existing component

Overview of our Approach

Python-specific
Optimizations

Profiler Selector

Python
program

Presenter
Presentation Notes
Now, I show you high level overview of our runtime.

We choose Python as a target language.
We use IBM production-quality JIT compiler as a base.
Then, we use CPython as a base, which is defacto Python VM.
The advantage is that we can use existing libraries such as mod_wsgi, which uses internal structure of CPython.

The structure is the same as Unladen Swallow. That uses CPython and LLVM compiler infrastructure.

© 2012 IBM Corporation16 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

What’s Added to the Fiorano JIT?
No-opt level compilation support
– Translated CPython bytecode into Testaross IR (IRGEN)
– Added method hotness profiling and compilation trigger

Python-specific optimization support
– Runtime profiling in CPython interpreter
– A lot of IRGEN level specialization for Python

• Caching the results of LOAD_GLOBAL (watch invalidation)
• Fast path versioning for LOAD_ATTR/STORE_ATTR/CALL
• Guard-based specialization for arithmetic & compare
• Specialization for built-ins such as instanceof, xrange, sin, cos
• Guard-based & fast path versioning for

GET_ITER/FOR_ITER,UNPACK_SEQUENCE
– Unboxing optimization for some integer and float

• Extending the escape analysis optimization in the Testarossa JIT

VEE 2011: Adding Dynamically-Typed Language Support to a Statically-Typed Language
Compiler: Performance Evaluation, Analysis, and Tradeoffs

© 2012 IBM Corporation17 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

dj
an

go

flo
at

nb
od

y
nq

ue
en

s
py

st
on

e
ric

ha
rd

s
rie

tv
el

d
slo

wpi
ck

le
slo

wsp
itf

ire
slo

wun
pi

ck
le

sp
am

ba
ye

s
ge

om
ea

n

E
x
e
cu

ti
o
n

 T
im

e
 N

o
rm

a
li

ze
d
 t

o
 C

p
y
th

o
n

fiorano-hot unladen-swallow pypy_18

Normalized Execution Time of Python JITs over CPython

speedup

© 2012 IBM Corporation18 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

PyPy (Customary Interpreter + JIT)

A Python implementation written in RPython
– interface with CPython modules may take a big performance hit

RPython is a restricted version of Python, e.g., (after start-up time)
– Well-typed according to type inference rules of RPython
– Class definitions do not change
– Tuple, list, dictionary are homogeneous (across elements)
– Object model implementation exposes runtime constants
– Various hint to trace selection engine to capture user program scope

Tracing JIT through both user program and runtime
– A trace is a single-entry-multiple-exit code sequence (like long extended basic block)
– Tracing automatically incorporates runtime feedback and guards into the trace

The optimizer fully exploit the simple topology of a trace to do very powerful data-
flow based redundancy elimination

© 2012 IBM Corporation19 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Number/Percentage of Ops Removed by PyPy Optimization

Such degree of allocation
removal was not seen in any

general-purpose JIT

PEPM 2011: Allocation Removal by Partial Evaluation in a Tracing JIT

© 2012 IBM Corporation20 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Common Pitfalls of Existing Reusing JIT Approaches

1. Over-reliance on the JIT alone to improve the performance and
underestimating the importance of optimizing the runtime

For example, a) optimizing named lookup by analyzing hashtable
implementations vs. b) implementing named lookup as hidden classes and
using runtime feedback to them to indexed lookup

2. Over-reliance on traditional redundancy elimination optimizations to
reduce path length of the fat runtime

Fat runtime imposes two major hurdles to effective dataflow
Long call-chain requires excessive inlining capacity
Excessive redundant heap operations

3. Not emphasizing enough on, specialization, a unique and abundant
optimization opportunity in scripting language runtime

© 2012 IBM Corporation21 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Effect of Different Optimization Levels: Fiorano JIT

0

0.2

0.4

0.6

0.8

1

1.2

dj
an

go

flo
at

nb
od

y

nq
ue

en
s

py
st

on
e

ric
ha

rd
s

rie
tv

el
d

slo
wpi

ck
le

slo
wsp

itf
ire

slo
wun

pic
kl

e
sp

am
ba

ye
s

ge
om

ea
n

E
x

e
cu

ti
o

n
 T

im
e

 N
o

rm
a

li
z
e

d
 t

o
 C

p
y
th

o

noOpt cold warm hot

sp
ee

du
p

© 2012 IBM Corporation22 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Tips for Reusing JIT Designers

1. Understand characteristics of your runtime
– identify dominant operations w/ high overhead
– understand the nature of excessive computation (e,g, heap, branch, call)

2. Remove excessive path lengths in the runtime as much as possible

3. Inside the reusing JIT, focus on the JIT’s ability to specialize

4. Boosting existing optimizations in reusing JIT

© 2012 IBM Corporation23 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Typical Profile of a “Fat” Scripting Language Runtime

Java
Bytecode

Instruction path length per python bytecode
LOAD_LOCAL BINARY_ADD

(int+int)
LOAD_ATTR

(self.x)
COMPARE

(int > 0)
CALL_FUNCT

(self.op())
heap-read 3 5 29 17 53

heap-write 0 2 4 2 16

heap-alloc 0 1 1 0 2

branch 2 8 19 18 34

invoke (JNI) 0 17(0) 23(0) 26(2) 23(2)

return 0 17 23 26 23

arithmetic 0 5 38 8 11

local/const 6 60 152 96 154

Total 12 115 289 191 313

CPython runtime exhibits similar characteristics

Instruction path length profile of a typical Python bytecode in Jython runtime

© 2012 IBM Corporation24 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Tips for Reusing JIT Designers

1. Understand characteristics of your runtime
– identify dominant operations w/ high overhead
– understand the nature of excessive computation (e,g, heap, branch, call)

2. Remove excessive path lengths in the runtime as much as possible
– adopt best practice of VM implementation
– re-evaluate the improved runtime (Step 1)

3. Inside the reusing JIT, focus on the JIT’s ability to specialize

4. Boosting existing optimizations in reusing JIT

© 2012 IBM Corporation25 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Effect of Runtime Improvement: Jython 2.5.1 to 2.5.2

0

0.5

1

1.5

2

2.5

3

3.5

dj
an

go

flo
at

nb
od

y

nq
ue

en
s

py
st

on
e

ric
ha

rd
s

rie
tv

el
d

slo
w

pi
ck

le
slo

w
sp

itf
ire

slo
w

un
pi

ck
le

sp
am

ba
ye

s

ge
om

ea
n

E
x
e
cu

ti
o
n
 T

im
e
 N

o
rm

a
li

z
e
d
 t

o
 C

p
y
th

o

jython252_ojdk jython251_ojdk

Improvements from Jython 2.5.1 to 2.5.2
– more than 50% reduction in path length of CALL_FUNCTION
– significant speedups on large benchmarks with frequent calls

sp
ee

du
p

© 2012 IBM Corporation26 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Tips for Reusing JIT Designers

1. Understand characteristics of your runtime
– identify dominant operations w/ high overhead
– understand the nature of excessive computation (e,g, heap, branch, call)

2. Remove excessive path lengths in the runtime as much as possible
– adopt best practice of VM implementation
– re-evaluate the improved runtime (Step 1)

3. Inside the reusing JIT, focus on the JIT’s ability to specialize
– Coverage: how many are specialized and specialized successfully
– Degree of strength reduction: how fast is the fast version of specialization

4. Boosting existing optimizations in reusing JIT

© 2012 IBM Corporation27 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Pybench: Speedup of JITs on Common Python Idioms

0%

100%

200%

300%

400%

500%

CALL
S

LO
OKUP

ARITHMETIC
NEW_IN

STANCE
CONTROL_

FLO
W

STRIN
G

UNICODE
DICTIO

NARY

LIS
T

TUPLE
S

Sp
ee

du
p

ov
er

 C
Py

th
on

pypy_18
fiorano
jython 2.5.2

37x 122x 29x 98x 35x23x 136x

sp
ee

du
p

© 2012 IBM Corporation28 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Breakdown of Dynamic Python Bytecode Execution

0%

20%

40%

60%

80%

100%

dj
an

go

flo
at

nb
od

y

nq
ue

en
s

py
st

on
e

ric
ha

rd
s

rie
tv

el
d

slo
wpi

ck
le

slo
wsp

itf
ire

slo
wun

pi
ck

le
sp

am
ba

ye
s

%
 B

y
te

co
d

e
s

Interpreted Interpreted-guard-failed
Compield-unspecializable Compiled-unspecialized
Compiled-specialization-succeeded Compiled-specialization-failed

© 2012 IBM Corporation29 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Tips for Reusing JIT Designers

1. Understand characteristics of your runtime
– identify dominant operations w/ high overhead
– understand the nature of excessive computation (e,g, heap, branch, call)

2. Remove excessive path lengths in the runtime as much as possible
– adopt best practice of VM implementation
– re-evaluate the improved runtime (Step 1)

3. Inside the reusing JIT, focus on the JIT’s ability to specialize
– Coverage: how many are specialized and specialized successfully
– Degree of strength reduction: how fast is the fast version of specialization

4. Boosting existing optimizations in reusing JIT

© 2012 IBM Corporation30 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Effective Boosting Techniques in Fiorano JIT

Runtime feedback driven specialization
– Types are typically quite stable to rely on simple runtime feedback
– Achieve much higher coverage than analysis based approach

Focus on early path length reduction, especially during translation to IR

Guard-based specialization
– Compared to versioning based specialization, guard eliminates data-flow join
– Need to monitor guard failure and need de-optimization support

© 2012 IBM Corporation31 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus31

Concluding Remarks

Whenever an interpreted language emerges, reusing an existing JIT (LLVM, Java
JIT) to compile the language becomes an economic option

Many reusing JITs for scripting languages do not live up to the expectation. Why?
– The root cause of scripting language overhead is the excessive path length

explosion in the language runtime (10~100x compared to static language)
– Traditional JITs are not capable of massive path length reduction in language

runtime permeated with heap/pointer manipulation and control-flow join

We offer lessons learned and recommendations to reusing JITs designers
– Focus on path length reduction as the primary metrics to design your system
– Do not solely rely on the JIT, improving the language runtime is as important
– When reusing optimizations in the JIT, less is more
– Instead, focus on specialization, runtime feedback, and guard-based approach

© 2012 IBM Corporation32 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

BACK UP

© 2012 IBM Corporation33 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

InvokeDynamics and JVM Languages

Performance of pilot implementation of Jython using invokedynamics

By Shashank Bharadwaj, University of Colorado
http://wiki.jvmlangsummit.com/images/8/8d/Indy_and_Jython-Shashank_Bharadwaj.pdf

© 2012 IBM Corporation34 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Evolution of Javascript JITs
Google

– V8:
• efficient object representation
• hidden classes
• GC

– Crankshaft: “traditional” optimizer (Dec 2010)
• adaptive compilation
• aggressive profiling
• optimistic assumptions
• SSA, invariant code motion, register

allocation, inlining
• Overall, improved over V8 by 50%

– Beta release of Chrome with native client
integrated

• C/C++ codes executed inside browser with
security restrictions close to Javascripts

Mozilla
– TraceMonkey

• trace-JIT, aggressive type specialization
– JaegerMonkey (Sept, 2010, Firefox 4)

• method-JIT, inlining
– IonMonkey (2011)

Apple
– Nitro JIT (Safari 5)
– “ 30% faster than Safari 4, 3% faster than

Chrome 5, 2X faster than Firefox 3.6”

Microsoft
– Chakra JIT (IE9)

• async compilation
• type optimization
• fast interpreter
• library optimization

JIT compilation for Javascript is a reality
all major browser/mobile vendors have their own Javascript engine!
Nodejs: server-side Javascript using asynchronous event driven model

© 2012 IBM Corporation35 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Marco Cornero (ST Ericsson): http://www.hipeac.net/system/files/2011-04-06_compilation_for_mobile.pdf

© 2012 IBM Corporation36 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Google: Crankshaft JIT

A new JIT compiler for V8 (Dec 2010)
– Performance improvement by 50%, upto 2X (V8 benchmark)
– Mostly benefits codes with hot loops, not for very short scripts (SunSpider)
– Improved start-up time for web apps, e.g., gmail

Crankshaft JIT (adaptive compilation):
– Base compiler: simple code generation
– Runtime profiler: identify hot codes and collect type info
– Optimizing compiler (hot codes only): SSA, loop invariant code motion, linear-

scan RA, inlining, using runtime type info
– Deoptimization support: can bail out of optimized codes if runtime assumption

(e.g., type) is no longer valid

© 2012 IBM Corporation37 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Performance of Javascript implementations

37

sp
ee

du
p

© 2012 IBM Corporation38 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

Performance of Ruby Implementations

38

sp
ee

du
p

© 2012 IBM Corporation39 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

IronPython: DynamicSites
Optimize method dispatch (including operators)
Incrementally create a cache of method stubs and guards in
response to VM queries
public static object Handle(object[],

FastDynamicSite<object, object, object> site1,
object obj1, object obj2) {

if (((obj1 != null) && (obj1.GetType() == typeof(int)))
&& ((obj2 != null) && (obj2.GetType() == typeof(int)))) {
return Int32Ops.Add(Converter.ConvertToInt32(obj1),

Converter.ConvertToInt32(obj3));
}
if (((obj1 != null) && (obj1.GetType() == typeof(string)))

&& ((obj2 != null) && (obj2.GetType() == typeof(string)))) {
return = StringOps.Add(Converter.ConvertToString(obj1),

Converter.ConvertToString(obj2));
}
return site1.UpdateBindingAndInvoke(obj1, obj3);

}

Propagate types when UpdateBindingAndInvoke recompiles stub

Presenter
Presentation Notes
Example could be animated/explained incrementally to show how the stub is built up step by step

	Reusing JITs are from Mars, Dynamic Scripting Languages are from Venus���Peng Wu, IBM T.J. Watson Research Center
	Trends in Workloads, Languages, and Architectures
	Popularity of Dynamic Scripting Languages
	Language Interpreter Comparison (Shootout)
	Dynamic Scripting Language JIT Landscape
	Scripting Languages Compilers: A Tale of Two Worlds
	Scripting Languages Compilers: A Tale of Two Worlds
	Outline
	Python Language and Implementation
	Overview on Jython
	Execution Time of Jython 2.5.2 Normalized over CPython
	Jython: An Extreme case of Reusing JITs
	Jython Runtime Profile
	Why is the Java JIT Ineffective?
	The Fiorano JIT
	What’s Added to the Fiorano JIT?
	Normalized Execution Time of Python JITs over CPython
	PyPy (Customary Interpreter + JIT)
	Number/Percentage of Ops Removed by PyPy Optimization
	Common Pitfalls of Existing Reusing JIT Approaches
	Effect of Different Optimization Levels: Fiorano JIT
	Tips for Reusing JIT Designers
	Typical Profile of a “Fat” Scripting Language Runtime
	Tips for Reusing JIT Designers
	Effect of Runtime Improvement: Jython 2.5.1 to 2.5.2
	Tips for Reusing JIT Designers
	Pybench: Speedup of JITs on Common Python Idioms
	Breakdown of Dynamic Python Bytecode Execution
	Tips for Reusing JIT Designers
	Effective Boosting Techniques in Fiorano JIT
	Concluding Remarks
	Slide Number 32
	InvokeDynamics and JVM Languages
	Evolution of Javascript JITs
	Slide Number 35
	Google: Crankshaft JIT
	Performance of Javascript implementations
	Performance of Ruby Implementations
	IronPython: DynamicSites

