May 9, 2012

Reusing JITs are from Mars, Dynamic Scripting
Languages are from Venus

Peng Wu, IBM T.J. Watson Research Center

© 2012 IBM Corporation



Trends in Workloads, Languages, and Architectures

A Demographic evolution of programmers

System programmers Domain experts = Non-programmers

new

Programming

by examples :
Streaming model ig data workloa
(Hadoop, CUDA, (distributed)

.- -.OpenCL, SPL, ...)

mixed workloads
! (data center)

o

=
S
S
=
>
©
-
o

~ -
e e =

Database, Webserver

C/C++, Fortran,
Java, ...

v

traditional

traditional _ new

2 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



dTrend in emerging programming paradigms

. . .. TIOBE Language Index
— Dynamic scripting languages are gaining

popularity and emerging in production deployment Rank Name Share
Commercial deployment Education 1 ¢ 17.555%
- PHP: Facebook, LAMP - Increasing adoption of 2 Java 17.026%
_ pyt.hon; Y_ouTube, Python as _entry-level 3 Cat 3.896%
InviteMedia, Google programming language
AppEngine _ 4 Objective-C 8.236%
- Ruby on Rails: Twitter, Demographlc.:s 5 Ctt 7.348%
ManyEyes - Programming becomes a
everyday skill for many 6 PHP 5.288%
non-Cs majors 7 Visual Basic 4.962%
“Python helped us gain a huge lead in features and a 8 Python 3.665%
majority of early market share over our competition , .
using C and Java.” 9 Javascript 2.879%
- Scott Becker 10 Perl 2.387%

CTO of Invite Media Built on Django, Zenoss, Zope 11 Ruby 1.510%

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Language Interpreter Comparison (Shootout)

10000.00

= Python mRuby 1.8 = JavaScript ®mlLua
~—
S 1000.00
s
-
= 110
- 100.00 -
Q
N
‘©
E 1000 -
o
c
o
) \4
E 1.00 - E
n

= g
'43 0.10 -
&)
Q
x
1]

0.01

> &
S~ O
© & .;‘:.@”‘ﬁ & ej-bQ 64‘-’5’ \5“
\0 qs‘bb & @F" < 5'(%
W & &L

Benchmarks: shootout (hitp://shootout.alioth.debian.org/) measured on Nehalem
Languages: Java (JIT, steady-version); Python, Ruby, Javascript, Lua (Interpreter)
Standard DSL implementation (interpreted) can be 10~100 slower than Java (JIT)

4 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation


http://shootout.alioth.debian.org/

Client
GO L )gle (wﬂ
CrankShaft -

Faah

= 3

£

lon
Monkey

Chakra

S
% Sun

DaVinci
Machine

Client/Server

Rubinius

Client/Server
PyPy

Fiorano

GOL)S[Q @%Sun

DaVinci
Machine

Unladen-
swallow

P9 HipHop

Server

Significant difference in JIT effectiveness across languages

— Javascript has the most effective JITs
— Ruby JITs are similar to Python’s

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

ORACLE’

LUJVM based
— Jython
— JRuby
— Rhino

UCLR based
— IronPython
— IronRuby
— IronJscript
— SPUR

UAdd-on JIT

— Unladen-
swallow

— Fiorano
— Rubinius

JAdd-on trace JIT
~ PyPy
— LuadIT
— TraceMonkey
— SPUR

© 2012 IBM Corporg

tion




Scripting Languages Compilers: A Tale of Two Worlds

UCustomary VM and JIT design targeting UThe reusing JIT phenomenon
one scripting language — reuse the prevalent interpreter
—in-house VM developed from scratch implementation of a scripting language
and designed to facilitate the JIT — attach an existing mature JIT
—in-house JIT that _understands target — (optionally) extend the “reusing” JIT to
language semantics optimize target scripting languages
UHeavy development investment, most QConsiderations for reusing JITs
noticeably in Javascript — Reuse common services from mature
— where performance transfers to JIT infrastructure
competitiveness

— Harvest the benefits of mature
optimizations
QSuch VM+JIT bundle significantly reduces — Compatibility with standard
the performance gap between scripting implementation by reusing VM
languages and statically typed ones
— Sometimes more than 10x speedups

_ LWilling to sacrifice some performance, but
over interpreters

still expect substantial speedups from
compilation

6 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Scripting Languages Compilers: A Tale of Two Worlds

UCustomary VM and JIT design targeting UThe reusing JIT phenomenon
one scripting language — reuse the prevalent interpreter
—in-house VM developed from scratch implementation of a scripting language
and designed to facilitate the JIT — attach an existing mature JIT
—in-house JIT that _understands target — (optionally) extend the “reusing” JIT to
language semantics optimize target scripting languages
UHeavy development investment, most QConsiderations for reusing JITs
noticeably in Javascript — Reuse common services from mature
— where performance transfers to JIT infrastructure
competitiveness

— Harvest the benefits of mature
optimizations
USuch VM+JIT bundle significantly reduces — Compatibility with standard

the performance gap between scripting implementation by reusing VM
languages and statically typed ones

— Sometimes more than 10x speedups

: QWilling to sacrifice some performance, but
over interpreters

still expect substantial speedups from
compilation

7 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Let’s take an in-depth look at the reusing JIT phenomenon

We focus on the world of Python JIT

ok wwbhPE

PyPy: customary VM + trace JIT based on RPython

Fiorano JIT: based on Testarossa JIT from IBM J9 VM (our own)
Jython: translating Python codes into Java codes
Unladen-swallow JIT: based on LLVM JIT (google)

IronPython: translating Python codes into CLR (Microsoft)

The rest of the talk

The state-of-the-art of reusing JIT approach
Understanding Jython, Fiorano JIT, and PyPy
Recommendation of Reusing JIT designers
Conclusions

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

© 2012 IBM Corporation



dPython is an object-oriented, dynamically typed language
— Monolithic object model (every data is an object, including integer or method frame)
— support exception, garbage collection, function continuation
— CPython is Python interpreter in C (de factor standard implementation of Python)

f 00. py

def foo(list): ULOAD_GLOBAL (name resolution)
return len(list)+1 — dictionary lookup

python bytecode QCALL_FUNCTION (method invocation)

LOAD_GLOBAL — frame object, argument list processing,

LOAD_FAST ' dispatch according to types of calls
CALL_FUNCTI ON

LOAD CONST . .
Bl NARY ADD UBINARY _ADD (type generic operation)

RETURN VALUE — dispatch according to types, object creation

9 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



LA clean implementation of Python on top of JVM

U Generate JVM bytecodes from Python 2.5 codes
—interface with Java programs
—true concurrence (i.e., no global interpreter lock)
—but cannot easily support standard C modules

URuntime rewritten in Java, JIT optimizes user programs and runtime
— Python built-in objects are mapped to Java class hierarchy
—Jython 2.5.x does not use InvokeDynamic in Java7 specification

UJython is an example of JVM languages that share similar characteristics

—e.g., JRuby, Clojure, Scala, Rhino, Groovy, etc
—similar to CLR/.NET based language such as IronPython, IronRuby

10 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Execution Time of Jython 2.5.2 Normalized over CPython

11

Execution Time Normalized to Cpython

N
n

N
|

=
wn

[

o
(0]

&Q’

&

&

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

J|I|II| || [

dnpoaads

© 2012 IBM Corporation



Jython has minimal customization for the target .
def cal cl(self,res, size):

language Python <« =0
— It does a “vanilla” translation of a Python while x < size:
program to a Java program res += 1

X += 1

— The (Java) JIT has no knowledge of Python
return res

language nor its runtime

private static PyCbject cal c$1(PyFranme frane)
{
franme. setlocal (3, i$%$0);
frame. setlocal (2, i%$0);
whil e(frane.getlocal (3). It(franme.getlocal (0)). nonzero_ ())
{
franme. setlocal (2, frane.getlocal (2). add(frane.getlocal (1)));
frame. setlocal (3, frane.getlocal (3). add(i$1));
}

return frane. getl ocal (2);

}

12 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



def foo(self):
return 1

Jython Runtime Profile

def cal cl(self,res,size): def cal c2(self,res,size): def cal c3(self,res,size):
x =0 x =0 Xx =0
while x < size: while x < size: while x < size:
res += 1 res += self.a res += sel f.foo()
X += 1 X += 1 X += 1
return res return res return res

(a) localvar-loop (b) getattr-loop (c) call-loop
# Java path length per Python loop iteration
bytecode (a) localvar- (b) getattr- (c) call-loop In an ideal code generation
loop loop " : L
Critical path of 1 iteration include:
heap-read 47 80 131
heap-write 11 11 31 * 2 integer add
* 1 integer compare
heap-alloc 2 2 S « 1 conditional branch
branch 46 70 101
: On the loop exit
invoke (JND) 10(2) 22(2) L115(4) * box the accumulated value into
return 70 92 115 Pyl nt eger
arithmetic 18 56 67 * store boxed value tor es
local/const 268 427 583
100x path length
Total 534 832 1152 explosion

13

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus




What does it take to optimize this example effectively?

L Massive inlining to expose all computation within the loop to the JIT
— for integer reduction loop, 70 ~ 110 call sites need to be inlined

O Precise data-flow information in the face of many data-flow join
— for integer reduction loop, between 40 ~ 100 branches

O Ability to remove redundant allocation, heap-read, and heap-write
— require precise alias/points-to information

O Let's assume that the optimizer can handle local accesses effectively

14 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



®

The Fiorano JIT

dIBM production-quality
Just-In-Time (JIT) compiler for VM
Java as a base

Profiler Selector
|
i
dCPython as a language 1T | Python bytecode
. . v
virtual machine (VM) Python bytecode ->
— de facto standard of Intermediate representation
profile
Python information l IR
Python-specific
—

Optimizations
Same structure as

Unladen Swallow
U CPython with LLVM

binary .

New component

15 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Presenter
Presentation Notes
Now, I show you high level overview of our runtime.



We choose Python as a target language.

We use IBM production-quality JIT compiler as a base.

Then, we use CPython as a base, which is defacto Python VM.

The advantage is that we can use existing libraries such as mod_wsgi, which uses internal structure of CPython.



The structure is the same as Unladen Swallow. That uses CPython and LLVM compiler infrastructure.


LNo-opt level compilation support
—Translated CPython bytecode into Testaross IR (IRGEN)
—Added method hotness profiling and compilation trigger
QPython-specific optimization support
—Runtime profiling in CPython interpreter
— A lot of IRGEN level specialization for Python
» Caching the results of LOAD_GLOBAL (watch invalidation)
» Fast path versioning for LOAD_ATTR/STORE_ATTR/CALL
» Guard-based specialization for arithmetic & compare
» Specialization for built-ins such as instanceof, xrange, sin, cos

» Guard-based & fast path versioning for
GET_ITER/FOR_ITER,UNPACK SEQUENCE

— Unboxing optimization for some integer and float
» Extending the escape analysis optimization in the Testarossa JIT

VEE 2011: Adding Dynamically-Typed Language Support to a Statically-Typed Language
Compiler: Performance Evaluation, Analysis, and Tradeoffs

16 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Normalized Execution Time of Python JITs over CPython

17

Execution Time Normalized to Cpython

[
(0]
|

[
o
1

=
N

[
N
1

[EEN

o
0o

dnpoaads

o
o

©
I

0.2 -

% 4 % O < @ < 2 o
& oee’(\ 9’@0 ,{\fc‘r‘é eq’\ F & ¢ ,ofz?\e @‘Z’@
(\Q QA {\0 {\Q/ \O$Q $9Q (\Q ’OS(\ O_,@o
@ P B R

E fiorano-hot O unladen-swallow

B pypy_18

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



LA Python implementation written in RPython
— interface with CPython modules may take a big performance hit

URPython is a restricted version of Python, e.g., (after start-up time)
— Well-typed according to type inference rules of RPython
— Class definitions do not change
— Tuple, list, dictionary are homogeneous (across elements)
— Object model implementation exposes runtime constants
— Various hint to trace selection engine to capture user program scope

UTracing JIT through both user program and runtime
— A trace is a single-entry-multiple-exit code sequence (like long extended basic block)

— Tracing automatically incorporates runtime feedback and guards into the trace

UThe optimizer fully exploit the simple topology of a trace to do very powerful data-
flow based redundancy elimination

18 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Number/Percentage of Ops Removed by PyPy Optimization

num loops new  removed get/set  removed guard  removed allops  removed
crypto_pyaes 78 3088 50% 57148 25% 9055 95% 137189 80%
django 51 673 54% 19318 18% 3876 93% 55682 85%
fannkuch 43 171 49% 886 63% 1159 81% 49335 45%
go 517 | 12234 16% | 200842 21% | 53138 90% | 568542 84%
htmlSlib 498 | 14432 68% | 503390 [1% | 71592 94% | 1405730 91%
meteor-contest 39 2717 36% 4402 31% 1078 83% 12862 68%
nbody 13 96 38% 443 69% 449 18% 2107 38%
pyflate-fast 162 | 2278 35% 39126 20% 8194 92% 112857 80%
raytrace-simple 120 3118 39% 91982 15% 13572 95% 247436 89%
richards 87 844 4% 49875 22% 4130 91% 133898 83%
spambayes 314 | 5608 19% 117002 [ 1% 25313 94% 324125 90%
spectral-norm 38 360 64% 5553 20% 1122 92% 11878 77%
telco 46 1257 90% 37470 3% 6644 99% 98590 97%
twisted-names 214 | 5273 84% 100010 10% 23247 96% 279667 92%
total 2240 | 49709 T0% || 1227447 14% | 222569 93% | 3395548 89%

Such degree of allocation
removal was not seen in any
general-purpose JIT

e

PEPM 2011: Allocation Removal by Partial Evaluation in a Tracing JIT

19

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

© 2012 IBM Corporation




20

Over-reliance on the JIT alone to improve the performance and
underestimating the importance of optimizing the runtime

For example, a) optimizing named lookup by analyzing hashtable
implementations vs. b) implementing named lookup as hidden classes and
using runtime feedback to them to indexed lookup

Over-reliance on traditional redundancy elimination optimizations to
reduce path length of the fat runtime

Fat runtime imposes two major hurdles to effective dataflow
O Long call-chain requires excessive inlining capacity

O Excessive redundant heap operations

Not emphasizing enough on, specialization, a unique and abundant
optimization opportunity in scripting language runtime

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Effect of Different Optimization Levels: Fiorano JIT

=
N
|

o
0 P

|
speedup

o
()]
!

©
IS
|
I

Execution Time Normalized to Cpytho
o
N

O noOpt Wcold Owarm M hot

21 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Tips for Reusing JIT Designers

1. Understand characteristics of your runtime
— identify dominant operations w/ high overhead
— understand the nature of excessive computation (e,g, heap, branch, call)

2. Remove excessive path lengths in the runtime as much as possible
3. Inside the reusing JIT, focus on the JIT’s ability to specialize

4. Boosting existing optimizations in reusing JIT

22 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Instruction path length profile of a typical Python bytecode in Jython runtime

# Java Instruction path length per python bytecode

Bytecode || oAD_LOCAL | BINARY_ADD | LOAD_ATTR | COMPARE | CALL_FUNCT
(int+int) (self.x) (int > 0) (self.op()

heap-read 3 5 29 17 53
heap-write 0 2 4 2 16
heap-alloc 0 1 1 0 2

branch 2 8 19 18 34
invoke (INI) 0 17(0) 23(0) 26(2) 23(2)

return 0 17 23 26 23
arithmetic 0 5 38 8 11
local/const 6 60 152 96 154

Total 12 115 289 191 313

23

CPython runtime exhibits similar characteristics

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

© 2012 IBM Corporation



Tips for Reusing JIT Designers

1. Understand characteristics of your runtime
— Identify dominant operations w/ high overhead
— understand the nature of excessive computation (e,g, heap, branch, call)

2. Remove excessive path lengths in the runtime as much as possible
— adopt best practice of VM implementation
— re-evaluate the improved runtime (Step 1)

3. Inside the reusing JIT, focus on the JIT’s ability to specialize

4. Boosting existing optimizations in reusing JIT

24 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



25

w
o1

w
!

N
&)
!

|
|

N
!

o X 3 2 o o S % <@ e o o
© &\0,0 ~o°6 & S fzﬁé \C\P '&5\( ,\315 fﬁe @efb
< & Qﬂg {\('(\ R\ Q\9Q \§\Q N °
< @\O O & 6Qrz’ 8)

O jython252_ojdk O jython251_ojdk

o
g R
—
|

|

|
—
—
|
-
speedup

%

Execution Time Normalized to Cpytho
H
[
% ‘

O Improvements from Jython 2.5.1 to 2.5.2
— more than 50% reduction in path length of CALL_FUNCTION
— significant speedups on large benchmarks with frequent calls

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Tips for Reusing JIT Designers

1. Understand characteristics of your runtime
— Identify dominant operations w/ high overhead
— understand the nature of excessive computation (e,g, heap, branch, call)

2. Remove excessive path lengths in the runtime as much as possible
— adopt best practice of VM implementation
— re-evaluate the improved runtime (Step 1)

3. Inside the reusing JIT, focus on the JIT’s ability to specialize
— Coverage: how many are specialized and specialized successfully
— Degree of strength reduction: how fast is the fast version of specialization

4. Boosting existing optimizations in reusing JIT

26 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Pybench: Speedup of JITs on Common Python Idioms

speedup

37x 122x 29x  23x 136x 98x 35x
500%
pypy_18

- | fiorano

0/ |
o w0k jython 2.5.2
=
a
O 300% -
o
>
(@)
o 200% -
-
e
(D)
2 1000

0% ‘

\ A
X o N R QY < © S L
\,O 6\2\ $@« O\,/ % 0$ C}\O A
w & & >
go ©

27 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Breakdown of Dynamic Python Bytecode Execution

100%

%o Bytecodes

80%
60%
40%
20%
\ \ \ \

0%

ro‘

Interpreted
m Compield-unspecializable
© Compiled-specialization-succeeded

28 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

O N4 @ <

& & ¢ &S
{\e O$Q $9Q
D\ O

2 NS

“ Interpreted-guard-failed
m Compiled-unspecialized

W Compiled-specialization-failed

© 2012 IBM Corporation



Tips for Reusing JIT Designers

1. Understand characteristics of your runtime
— Identify dominant operations w/ high overhead
— understand the nature of excessive computation (e,g, heap, branch, call)

2. Remove excessive path lengths in the runtime as much as possible
— adopt best practice of VM implementation
— re-evaluate the improved runtime (Step 1)

3. Inside the reusing JIT, focus on the JIT’s ability to specialize
— Coverage: how many are specialized and specialized successfully
— Degree of strength reduction: how fast is the fast version of specialization

4. Boosting existing optimizations in reusing JIT

29 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



URuntime feedback driven specialization
—Types are typically quite stable to rely on simple runtime feedback
— Achieve much higher coverage than analysis based approach

Focus on early path length reduction, especially during translation to IR

U Guard-based specialization
—Compared to versioning based specialization, guard eliminates data-flow join
—Need to monitor guard failure and need de-optimization support

30 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



UWhenever an interpreted language emerges, reusing an existing JIT (LLVM, Java
JIT) to compile the language becomes an economic option

UMany reusing JITs for scripting languages do not live up to the expectation. Why?

—The root cause of scripting language overhead is the excessive path length
explosion in the language runtime (10~100x compared to static language)

—Traditional JITs are not capable of massive path length reduction in language
runtime permeated with heap/pointer manipulation and control-flow join

UWe offer lessons learned and recommendations to reusing JITs designers
—Focus on path length reduction as the primary metrics to design your system
—Do not solely rely on the JIT, improving the language runtime is as important
—When reusing optimizations in the JIT, less is more
—Instead, focus on specialization, runtime feedback, and guard-based approach

31 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



UBACK UP

32

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

© 2012 IBM Corporation



InvokeDynamics and JVM Languages

Results: 4% improvement across the suite

¥:1

= jython-trunk latest @ gradual-server

= jython-experiments Jatest @ gradual-server
0.9 7 - : :

e
-

Ratio (less is better)
o o
s o

0.2 4
0.0 -
o 5 ] o ] A A & S (8 Nl
Q¥ ﬁ\'aﬁ 3 \P(\Q o‘\;ﬁ \\od" o 96\\"’6 e,‘o'i 6\“\9\ _ “0-:6 _00«“ é&\\t \s'\“q‘ @\d’
o™ v\.ﬂ o™ " < ‘k\o\ QCP’ o c'\W\ o o
5 “'o°° L) {s{\ﬁ 0 5?,\\\\1

Performance of pilot implementation of Jython using invokedynamics

By Shashank Bharadwaj, University of Colorado
http://wiki.jvmlangsummit.com/images/8/8d/Indy _and_Jython-Shashank Bharadwaj.pdf

33 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



U Mozilla

— TraceMonkey
U Google « trace-JIT, aggressive type specialization
— Va: — JaegerMonkey (Sept, 2010, Firefox 4)
 efficient object representation « method-JIT, inlining
* hidden classes — lonMonkey (2011)
e GC
— Crankshaft: “traditional” optimizer (Dec 2010) QApple

» adaptive compilation

_ . — Nitro JIT (Safari 5)
» aggressive profiling

o _ — * 30% faster than Safari 4, 3% faster than

* optimistic assumptions Chrome 5, 2X faster than Firefox 3.6"

o SSA, invariant code motion, register
allocation, inlining

Overall, improved over V8 by 50%

U Microsoft
— Chakra JIT (IE9)
e async compilation
* type optimization
» fastinterpreter
 library optimization

— Beta release of Chrome with native client
integrated

» C/C++ codes executed inside browser with
security restrictions close to Javascripts

JIT compilation for Javascript is a reality
» all major browser/mobile vendors have their own Javascript engine!
» Nodejs: server-side Javascript using asynchronous event driven model

34 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



JavaScript JIT Compilation: Big Opportunity
for Highly Impacting Contribution to Industry

Very fast evolution lately!

' Bamchmork Sulie, verdan &
8000

% 6000
amn

o b
(L]
v £y -
*
3 ap
- . i
LR By

V& Performance Optimizations

Brdez i Ecialr G2 buadplider Fara-munce
Mo o bhdaai

= I Bl R
[ St = R ]

B
CUPR

[y 15

L]

Ep

fdurar
B
b (]
-3
ue
L -
[l

Feanlra™ Howde Deli Nz KeD Mgl wiadBuea Clewrwl oo 8 Thom & Soune® Cudkilw?

[ Ayt o | BT ihanmie s LChmme v i 4
15 4.3 New sophisticated optimizers
ﬁa-l.:-:' 'JJ.' 2
Salan Perfonmance g_; (e.g. V8 Crankshaft, Apple Nitro) .
\—j - W Famawih
§ ) AR
surf ax the spead of fast, 3 =
Aol sun Uizl oo lgez oo D lceez b E &
respaasleetess of the ae ST levas TR =nalne powend E ’
wafs 1 rlll'ﬁ_-'l".'ﬁ'*-i" oo Ilr.l to Pwrs A5 S5 A5 1 143 E i
2
ni
» Accelerated evolution B T T
in the last few years = Big Opportunity for Compiler Research!
« Highly competitive (also to define a more efficient language...)
[ Calnpl laclan tar Yokl ARl 21T I HIFFRT I ds5nlal ver ashiap .!':. EE' [SSGN

Marco Cornero (ST Ericsson): http://www.hipeac.net/system/files/2011-04-06_compilation_for_mobile.pdf

35 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



UA new JIT compiler for V8 (Dec 2010)
— Performance improvement by 50%, upto 2X (V8 benchmark)
— Mostly benefits codes with hot loops, not for very short scripts (SunSpider)
—Improved start-up time for web apps, e.g., gmail

dCrankshaft JIT (adaptive compilation):
—Base compiler: simple code generation
—Runtime profiler: identify hot codes and collect type info

— Optimizing compiler (hot codes only): SSA, loop invariant code motion, linear-
scan RA, inlining, using runtime type info

— Deoptimization support: can bail out of optimized codes if runtime assumption
(e.qg., type) is no longer valid

36 Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation



Performance of Javascript implementations

Speedup (relative to Javascript)

37

20

18

16

14

12

10

19

binarytrees

fasta

mTraceMonkey

mandelbrot

nVe

m Rhino

nbody

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

spectralnorm

geomean

> speedup

© 2012 IBM Corporation



[

Performance of Ruby Implementations

38

Speedup (Relative to RUby)

7

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus

| I I ] I I _
0 -
& el v 3 e & & M &
& q&az? & S @ & qf o
& 4

mRuby 1.9
mJruby/OpenlDK
® Jruby/Hotspot 7
mJruby/TR

» Rubinius

speedup

© 2012 IBM Corporation



dOptimize method dispatch (including operators)

dincrementally create a cache of method stubs and guards in
response to VM queries

public static object Handl e(object][],
Fast Dynam cSi t e<obj ect, object, object> sitel,
obj ect obj 1, object obj2) {
if (((objl !'=null) &% (objl. Get Type() == typeof(int)))
&% ((obj2 !'= null) && (obj2. Get Type() == typeof(int)))) {
return | nt320ps. Add( Converter. Convert Tol nt 32(obj 1),
Converter. Convert Tol nt 32(obj 3));
}
if (((objl !'=null) && (objl. Get Type() == typeof(string)))
&% ((obj2 !'= null) &&% (obj2. Get Type() == typeof(string)))) {
return = StringQps. Add( Converter. Convert ToString(obj1),
Converter. Convert ToString(obj2));

}
return sitel. Updat eBi ndi ngAndl nvoke(obj 1, obj 3);

}

Propagate types when UpdateBindingAndinvoke recompiles stub

Reusing JITs are from Mars, and Dynamic Scripting Languages are from Venus © 2012 IBM Corporation


Presenter
Presentation Notes
Example could be animated/explained incrementally to show how the stub is built up step by step


	Reusing JITs are from Mars, Dynamic Scripting Languages are from Venus���Peng Wu, IBM T.J. Watson Research Center
	Trends in Workloads, Languages, and Architectures
	Popularity of Dynamic Scripting Languages
	Language Interpreter Comparison (Shootout)
	Dynamic Scripting Language JIT Landscape
	Scripting Languages Compilers: A Tale of Two Worlds
	Scripting Languages Compilers: A Tale of Two Worlds
	Outline
	Python Language and Implementation
	Overview on Jython
	Execution Time of Jython 2.5.2 Normalized over CPython
	Jython: An Extreme case of Reusing JITs
	Jython Runtime Profile
	Why is the Java JIT Ineffective?
	The Fiorano JIT
	What’s Added to the Fiorano JIT?
	Normalized Execution Time of Python JITs over CPython
	PyPy  (Customary Interpreter + JIT)
	Number/Percentage of Ops Removed by PyPy Optimization 
	Common Pitfalls of Existing Reusing JIT Approaches
	Effect of Different Optimization Levels: Fiorano JIT
	Tips for Reusing JIT Designers
	Typical Profile of a “Fat” Scripting Language Runtime
	Tips for Reusing JIT Designers
	Effect of Runtime Improvement: Jython 2.5.1 to 2.5.2
	Tips for Reusing JIT Designers
	Pybench: Speedup of JITs on Common Python Idioms
	Breakdown of Dynamic Python Bytecode Execution
	Tips for Reusing JIT Designers
	Effective Boosting Techniques in Fiorano JIT
	Concluding Remarks
	Slide Number 32
	InvokeDynamics and JVM Languages
	Evolution of Javascript JITs
	Slide Number 35
	Google: Crankshaft JIT
	Performance of Javascript implementations
	Performance of Ruby Implementations
	IronPython: DynamicSites

